The nucleotide composition of microsatellites impacts both replication fidelity and mismatch repair in human colorectal cells

نویسندگان

  • Christoph Campregher
  • Theresa Scharl
  • Manuela Nemeth
  • Clemens Honeder
  • Thomas Jascur
  • C. Richard Boland
  • Christoph Gasche
چکیده

Microsatellite instability is a key mechanism of colon carcinogenesis. We have previously studied mutations within a (CA)13 microsatellite using an enhanced green fluorescent protein (EGFP)-based reporter assay that allows the distinction of replication errors and mismatch repair (MMR) activity. Here we utilize this assay to compare mutations of mono- and dinucleotide repeats in human colorectal cells. HCT116 and HCT116+chr3 cells were stably transfected with EGFP-based plasmids harboring A10, G10, G16, (CA)13 and (CA)26 repeats. EGFP-positive mutant fractions were quantitated by flow cytometry, mutation rates were calculated and the mutant spectrum was analyzed by cycle sequencing. EGFP fluorescence pattern changed with the microsatellite's nucleotide sequence and cell type and clonal variations were observed in mononucleotide repeats. Replication errors (as calculated in HCT116) at A10 repeats were 5-10-fold higher than in G10, G16 were 30-fold higher than G10 and (CA)26 were 10-fold higher than (CA)13. The mutation rates in hMLH1-proficient HCT116+chr3 were 30-230-fold lower than in HCT116. MMR was more efficient in G16 than in A10 clones leading to a higher stability of poly-G tracts. Mutation spectra revealed predominantly 1-unit deletions in A10, (CA)13 and G10 and 2-unit deletions or 1-unit insertion in (CA)26. These findings indicate that both replication fidelity and MMR are affected by the microsatellite's nucleotide composition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequence dependent instability of mononucleotide microsatellites in cultured mismatch repair proficient and deficient mammalian cells.

We have measured the mutation rates of G(17) and A(17) repeat sequences in cultured mammalian cells with and without mismatch repair and have compared these rates to those of a (CA)(17) repeat sequence. Plasmids containing microsatellites that disrupt the reading frame of a downstream neomycin-resistance gene were introduced into the cells by transfection and revertants were selected using the ...

متن کامل

Mesalazine improves replication fidelity in cultured colorectal cells.

Epidemiologic studies indicate that mesalazine has chemopreventive effects in inflammatory bowel disease-associated colorectal cancer. Most of our general understanding of chemoprevention in colorectal cancer is, however, derived from aspirin, which is structurally similar to mesalazine. Herein we determined the influence of aspirin and mesalazine on replication fidelity in cultured colorectal ...

متن کامل

Highly elevated ultraviolet-induced mutation frequency in isolated Chinese hamster cell lines defective in nucleotide excision repair and mismatch repair proteins.

We have isolated N-methyl-N'-nitro-N-nitrosoguanidine-resistant cell lines from 43-3B Chinese hamster ovary cells, which are deficient in the ERCC1 gene involved in nucleotide excision repair. By Western blotting analysis, we found cell lines that are deficient or decreased in the amount of MSH6, or PMS2, or MSH2 proteins. Cell extracts of these cell lines show reduced efficiency of G:T mismatc...

متن کامل

Defective mismatch repair in extracts of colorectal and endometrial cancer cell lines exhibiting microsatellite instability.

A replication error (RER+) phenotype, characterized by somatic instability in simple repeated sequences, is associated with several types of cancer. To determine if a defect in DNA replication fidelity or repair of replication errors might explain this instability, we compared both processes in cell-free extracts from RER+ endometrial and colorectal cancer cell lines to RER- cell lines. SV40 or...

متن کامل

Defective mismatch repair, microsatellite mutation bias, and variability in clinical cancer phenotypes.

Microsatellite instability is associated with 10% to 15% of colorectal, endometrial, ovarian, and gastric cancers, and has long been used as a diagnostic tool for hereditary nonpolyposis colorectal carcinoma-related cancers. Tumor-specific length alterations within microsatellites are generally accepted to be a consequence of strand slippage events during DNA replication, which are uncorrected ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2010